
On the Science of Speed
Scaling From an

Algorithmist’s Viewpoint

Kirk Pruhs

University of Pittsburgh

Science’s Place in the World

2

Science

Mathematics

Engineering

Science’s Place in the World

3

Statics

Geometry, Algebra

Structural Engineering

Science’s Place in the World

4

Algorithms

Combinatorics

Software Engineering

Workshop’s Goal: Give Some Initial Answer

5

What science goes here?

Mathematics

Power Related Engineering

This Talk’s Goal

6

Give an algorithmist’s view of what a small piece
of this might look like

Mathematics

Power Related Engineering

7

Motivating Technology: Speed Scaling

8

Motivating Technology: Speed Scaling

One Question Raised By This Technology

  Engineering Question: How do you manage/
scale the speed/power, and how does this
interact with scheduling?
 Overarching engineering question for this talk

9

Science from the Algorithmist’s View
  Science research tries to model a complex system by

something simple, accurate, amenable to math and
predictive.
  Google researcher Muthu Muthukrishnan’s “My Slice of

Pizza” blog

10

• Accurate
• Realistic
• Predictive

• Simple
• Amenable to math

Another Muthu Quote:

  I realized this week in a meeting (at Google) that we
have people who see the tree and those that see the
forest, neither is useful. We need people who see a
tree and know it is in a forest, and who see a forest
and know that it is made up of trees.

11

Agenda
  Forest: How do you manage/scale

the speed/power, and how does
this interact with scheduling?

  Enumerate some of the interesting
trees/models in the forest:
  Physics
  Objective
  Analysis method
  etc.

  Explain what is known about a
couple interesting trees, and relate
this back to the forest

12

  The system needs
 Job selection algorithm: determines which job is

run
 e.g. Shortest Job First,
 Shortest Remaining Processing Time,
 Shortest Elapsed Time, etc.

 Speed scaling algorithm: determines the speed
that the processor is run

13

Modeling Policies/Algorithms and Schedules

14

Modeling Policies/Algorithms and Schedules

Job 1
Input

Schedule

Release
Time r1

Work/size w1 =
area of

job

Height = speed

15

Modeling Policies/Algorithms and Schedules

Job 1
Input

Schedule

Current
Time

Job 1

Job 2

Height = speed

16

Modeling Policies/Algorithms and Schedules

Job 1
Input

Schedule

Current
Time

Job 1

Job 2

Job 2 Job 1 Height = speed

17

Modeling Policies/Algorithms and Schedules

Job 1
Input

Schedule

Current
Time

Job 1

Job 2 Job 3

Job 2
Height = speed

18

Modeling Policies/Algorithms and Schedules

Job 1
Input

Schedule

Current
Time

Job 1

Job 2

Job 3
Job 2

Job 3

Height = speed

19

Modeling Policies/Algorithms and Schedules

Job 1
Input

Schedule

Current
Time

Job 1

Job 2

Job 3
Job 2

Job 3

Height = speed

  Dual Objectives:
  Some Quality of Service (QoS) measure of the schedule

  e.g. deadline feasibility, average response time, worst-case
response time, average slow down, etc.

  Some power related objective
  e.g. temperature, energy

20

Scheduling Objectives

Physical Models

 Allowable Speeds
 Continuous and unbounded
 Continuous and bounded
 Discrete

  Power P as a function of speed s
 P = sα where α is some constant

 Motivated by cube-root rule for dynamic power in
CMOS based processors, i.e. α ≈ 3

 P = sα + constant static power
 P = f(s) for some arbitrary function f

21

Physical Models

  Energy = ∫time Power
 Temperature T

 Newton’s Law of Cooling: rate of heat loss of a
body is proportional to the difference in
temperatures between the body and its
surroundings
 dT/dt = P – b T
 b is device dependent constant

22

How to Compare Algorithms?
  Average Case (Queuing Theory)

  Assume a mathematically tractable input distribution, e.g.
Poisson arrivals and exponential job sizes, and compute
expected performance of the algorithms

  Worst-case Relative Error (Competitive Analysis)
  An algorithm A is competitive if it has bounded relative error

 Max_I |A(I) – Optimal(I)|/Optimal(I) < ∞
  An algorithm is optimally competitive if it has minimal worst-

case relative error among all possible algorithms

23

Agenda
  Forest: How do you manage/scale

the speed/power, and how does
this interact with scheduling?

  Enumerate some of the interesting
trees/models in the forest:
  Physics
  Objective
  Analysis method
  etc.

  Explain what is known about a
couple interesting trees, and relate
this back to the forest

24

Cool Tree 1: Deadline Feasibility and Temperature

  Assume that somehow a system knows a
deadline for each job
  This makes the scheduling QoS objective a

constraint
  WLOG one can use Earliest Deadline First

for the job selection algorithm
  Allows one to focus on the speed scaling

algorithm
  Power objective is to minimize the maximum

temperature ever reached by the device.

25

Cool Tree 1: Deadline Feasibility and Temperature

  Understanding Newton’s Law:
dT/dt = P - bT
  If b=0, max temperature = energy
  If b=∞, max temperature = max power
  Key theorem for analysis: Maximum

temperature ≈ maximum energy over
any time interval of length 1/b

  Natural Question: Does the speed scaling
algorithm require knowledge of the device
specific cooling parameter b to be
competitive?
  Assume power = polynomial in speed

26

Cool Tree 1: Deadline Feasibility and Temperature

  Theorem: There is an optimally competitive
algorithm when b=∞
  Algorithm Description: At time t, run at

speed equal to the maximum over all t1
< t < t2 of e*w(t1, t, t2)
  Where w(t1, t, t2) is the aggregate size

of the jobs that arrive after t1, and
before t, with deadlines before t2

  Note that this algorithm is reasonably
simple, but sufficiently non-intuitive that it
is hard to imagine it being discovered by
experimentation and local search

  Theorem: This algorithm is simultaneously
competitive for all cooling parameters b
  Some natural algorithms that are

competitive for energy (b=0), are not
competitive for larger b

27

Cool Tree 2: Energy/Response Tradeoff

  Setup: A user specifies an energy amount ρ
that he/she is willing to spend to get a unit
improvement in response time
  e.g. I am willing to spend 3 ergs of energy for a 1

microsecond improvement in response time for a
particular job

  Response time of a job = completion time minus
release time

  Resulting Objective:
ρ *total response time + energy used

28

Cool Tree 2: Energy/Response Tradeoff

  Natural Question: As ρ decreases, and the
total energy used decreases, can the
energy of particular jobs increase in the
optimal schedule ?
  Recall ρ = amount of energy that you

are willing to spend to get a unit
decrease in response time

29

Cool Tree 2: Energy/Response Tradeoff

  Natural Question: As ρ decreases, and energy used decreases,
can the energy of particular jobs increase in the optimal
schedule ?

  Theorem: In the optimal schedule the power of a job J is
proportional to the number of jobs that would be delayed if J is
delayed (Modulo special cases)

  Answer: So as energy is lost, and jobs interfere more, this
theorem forces the energy for some jobs up at a faster rate
than energy is lost

  The optimal schedule doesn’t change smoothly as a function of
energy.

  Open algorithmic problem: find an efficient algorithm to find
the optimal schedule, or proof that no such algorithm exists

30

Cool Tree 2: Energy/Response Tradeoff

  Natural Question: Do properties of the
power function affect whether one can
have a competitive algorithm?
  Equivalently, can one reason about arbitrary power

functions?

31

Cool Tree 2: Energy/Response Tradeoff

  Natural Question: Do properties of the
power function affect whether one can
have a competitive algorithm?

  One answer: If the algorithm doesn’t know
the size of a job when it arrives, then the
algorithm can not be competitive if the
power function is very steep

32

Cool Tree 2: Energy/Response Tradeoff

  Natural Question: Do properties of the
power function affect whether one can
have a competitive algorithm?

  Another answer: The following algorithm is
competitive for all power functions:
  Job selection: Shortest Remaining

Processing Time (SRPT)
  Speed Scaling: Power = number of unfinished

jobs + 1
  The analysis requires completely different

techniques than the analysis of SRPT with a
fixed speed processor because
  With a fixed speed processor the resource

available per unit time is fixed
  With a variable speed processor, the

resource (energy) is global, and you get a
concave nonlinear return for investing
resources at a particular time

33

Some Concluding Remarks About the Forest:

34

Predictability of the Model
  Muthu’s Definition: Science research tries to "model" a complex system

by something simple, accurate, amenable to math and predictive.
  In practice, predictive usually means that thinking abstractly/

mathematically within the context of the model is useful for finding a good
engineering solution, not that the model perfectly predicts what will happen
in practice

  Google wants software engineers that have algorithms training, not
because the RAM model perfectly predicts the performance of an
algorithm on a real computer, but because being able to reason about
computation in an abstract model is useful when searching for a solution
on a real computer

35

Science: Algorithms
Mathematics: Combinatorics

Software Engineering

What Was Learned From This Research

  We got way better at reasoning about energy and temperature
as resources, at least within the types of models considered
  Allowable Speeds

  Best Model: Continuous and unbounded. Other models are more
complicated without providing more insight

  Power P as a function of speed s
  For some problems, one can reason about an arbitrary power

function
  Newton’s Law of Cooling dT/dt = P – bT

  The easiest way to think about approximate temperature is
energy over time intervals of length 1/b

  I can plausibly imagine teaching future engineers to think
abstractly about power/energy/temperature as we currently
teaching future software engineers to think about time/space.

36

Science of Power Management
  Questions for this workshop:

  What might a science of power management look like?
  What areas of power management are most amenable to scientific

investigation?
  What areas of power managements would most benefit from a better

scientific foundation?
  What benefits are there for a better scientific foundation for these areas

of power management?

37

Science of Power Management
Mathematics

Power Related Engineering

38

Speed scaling analysis is hard because energy is a global resource
that gives nonlinear returns from investment:

Time

Algorithm

Optimal

At this local time, it may look bad
for the algorithm, it is using too much
energy, and has a lot of unfinished jobs

waiting

Power

39

Speed scaling analysis is hard because energy is a global resource:

Time

Algorithm

Optimal

Main Analysis technique: Define a potential function Φ
that:
• Lower bound on energy savings of the algorithm in the
past
• Upper bound on extra energy required by the algorithm
in the future

Power

Cool Tree 2: Energy/Response Tradeoff

  If all jobs are the same size and
Power=speedα :
 the potential function Φ =

(number of excess jobs)2-1/α
works

 that is, Φ is an lower bound on
energy savings in the past, and an
upper bound on the extra energy
required in the future

40

Cool Tree 2: Energy/Response Tradeoff

  For arbitrary jobs sizes and an
arbitrary power function P, Φ is
more complicated:
 Φ = ∫job sizes q f(number of excess

jobs of size at least q)
 Where f(x) = f(x-1) + P’(P-1(x))

41

