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Workshop’s Goal: Give Some Initial Answer  
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This Talk’s Goal 
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Give an algorithmist’s view of what a small piece 
of this might look like 
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Motivating Technology: Speed Scaling 
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Motivating Technology: Speed Scaling 



One Question Raised By This Technology 

  Engineering Question: How do you manage/
scale the speed/power, and how does this 
interact with scheduling?   
 Overarching engineering question for this talk 
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Science from the Algorithmist’s View 
  Science research tries to model a complex system by 

something simple, accurate, amenable to math and 
predictive. 
  Google researcher Muthu Muthukrishnan’s “My Slice of 

Pizza” blog 
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• Accurate 
• Realistic 
• Predictive 

• Simple 
• Amenable to math 



Another Muthu Quote: 

  I realized this week in a meeting (at Google) that we 
have people who see the tree and those that see the 
forest, neither is useful. We need people who see a 
tree and know it is in a forest, and who see a forest 
and know that it is made up of trees. 

11 



Agenda 
  Forest: How do you manage/scale 

the speed/power, and how does 
this interact with scheduling? 

  Enumerate some of the interesting 
trees/models in the forest: 
  Physics 
  Objective 
  Analysis method 
  etc. 

  Explain what is known about a 
couple interesting trees, and relate 
this back to the forest 
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  The system needs 
 Job selection algorithm: determines which job is 

run 
 e.g. Shortest Job First, 
 Shortest Remaining Processing Time, 
 Shortest Elapsed Time, etc. 

 Speed scaling algorithm: determines the speed 
that the processor is run 
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Modeling Policies/Algorithms and Schedules 



14 

Modeling Policies/Algorithms and Schedules 

Job 1 
Input 

Schedule 

Release  
Time r1 

Work/size w1 = 
area of  

job 

Height = speed 



15 

Modeling Policies/Algorithms and Schedules 

Job 1 
Input 

Schedule 

Current 
Time 

Job 1 

Job 2 

Height = speed 



16 

Modeling Policies/Algorithms and Schedules 

Job 1 
Input 

Schedule 

Current 
Time 

Job 1 

Job 2 

Job 2 Job 1 Height = speed 



17 

Modeling Policies/Algorithms and Schedules 

Job 1 
Input 

Schedule 

Current 
Time 

Job 1 

Job 2 Job 3 

Job 2 
Height = speed 



18 

Modeling Policies/Algorithms and Schedules 

Job 1 
Input 

Schedule 

Current 
Time 

Job 1 

Job 2 

Job 3 
Job 2 

Job 3 

Height = speed 



19 

Modeling Policies/Algorithms and Schedules 

Job 1 
Input 

Schedule 

Current 
Time 

Job 1 

Job 2 

Job 3 
Job 2 

Job 3 

Height = speed 



  Dual Objectives: 
  Some Quality of Service (QoS) measure of the schedule 

  e.g. deadline feasibility, average response time, worst-case 
response time, average slow down, etc. 

  Some power related objective 
  e.g. temperature, energy 
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Scheduling Objectives 



Physical Models 

 Allowable Speeds 
 Continuous and unbounded  
 Continuous and bounded 
 Discrete 

  Power P as a function of speed s  
 P = sα where α is some constant 

 Motivated by cube-root rule for dynamic power in 
CMOS based processors, i.e. α ≈ 3 

 P = sα + constant static power 
 P = f(s) for some arbitrary function f 
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Physical Models 

  Energy = ∫time Power 
 Temperature T 

 Newton’s Law of Cooling:  rate of heat loss of a 
body is proportional to the difference in 
temperatures between the body and its 
surroundings   
 dT/dt = P – b T 
 b is device dependent constant 
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How to Compare Algorithms? 
  Average Case (Queuing Theory)  

  Assume a mathematically tractable input distribution, e.g. 
Poisson arrivals and exponential job sizes, and compute 
expected performance of the algorithms 

  Worst-case Relative Error (Competitive Analysis) 
  An algorithm A is competitive if it has bounded relative error  

 Max_I  |A(I) – Optimal(I)|/Optimal(I) < ∞ 
  An algorithm is optimally competitive if it has minimal worst-

case relative error among all possible algorithms 
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Agenda 
  Forest: How do you manage/scale 

the speed/power, and how does 
this interact with scheduling? 

  Enumerate some of the interesting 
trees/models in the forest: 
  Physics 
  Objective 
  Analysis method 
  etc. 

  Explain what is known about a 
couple interesting trees, and relate 
this back to the forest 
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Cool Tree 1: Deadline Feasibility and Temperature 

  Assume that somehow a system knows a 
deadline for each job  
  This makes the scheduling QoS objective a 

constraint 
  WLOG one can use Earliest Deadline First 

for the job selection algorithm 
  Allows one to focus on the speed scaling 

algorithm 
  Power objective is to minimize the maximum 

temperature ever reached by the device.  
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Cool Tree 1: Deadline Feasibility and Temperature 

  Understanding Newton’s Law:                   
dT/dt = P - bT 
  If b=0,  max temperature = energy 
  If b=∞, max temperature = max power 
  Key theorem for analysis: Maximum 

temperature ≈  maximum energy over 
any time interval of length 1/b 

  Natural Question: Does the speed scaling 
algorithm require knowledge of the device 
specific cooling parameter b to be 
competitive? 
  Assume power = polynomial in speed  
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Cool Tree 1: Deadline Feasibility and Temperature 

  Theorem: There is an optimally competitive 
algorithm when b=∞ 
  Algorithm Description: At time t, run at 

speed equal to the maximum over all           t1 
< t < t2 of e*w(t1, t, t2)  
  Where w(t1, t, t2) is the aggregate size 

of the jobs that arrive after t1, and 
before t, with deadlines before t2 

  Note that this algorithm is reasonably 
simple, but sufficiently non-intuitive that it 
is hard to imagine it being discovered by 
experimentation and local search 

  Theorem: This algorithm is simultaneously 
competitive for all cooling parameters b 
  Some natural algorithms that are 

competitive for energy (b=0), are not 
competitive for larger b 
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Cool Tree 2: Energy/Response Tradeoff 

  Setup: A user specifies an energy amount ρ 
that he/she is willing to spend to get a unit 
improvement in response time 
  e.g. I am willing to spend 3 ergs of energy for a 1 

microsecond improvement in response time for a 
particular job 

  Response time of  a job = completion time minus 
release time 

  Resulting Objective:                                   
ρ *total response time + energy used 
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Cool Tree 2: Energy/Response Tradeoff 

  Natural Question: As ρ decreases, and the 
total energy used decreases, can the 
energy of particular jobs increase in the 
optimal schedule ? 
  Recall ρ = amount of energy that you 

are willing to spend to get a unit 
decrease in response time 
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Cool Tree 2: Energy/Response Tradeoff 

  Natural Question: As ρ decreases, and energy used decreases, 
can the energy of particular jobs increase in the optimal 
schedule ? 

  Theorem: In the optimal schedule the power of a job J is 
proportional to the number of jobs that would be delayed if J is 
delayed (Modulo special cases) 

  Answer: So as energy is lost, and jobs interfere more, this 
theorem forces the energy for some jobs up at a faster rate 
than energy is lost 

  The optimal schedule doesn’t change smoothly as a function of 
energy.  

  Open algorithmic problem: find an efficient algorithm to find 
the optimal schedule, or proof that no such algorithm exists  
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Cool Tree 2: Energy/Response Tradeoff 

  Natural Question: Do properties of the  
power function affect whether one can 
have a competitive algorithm? 
  Equivalently, can one reason about arbitrary power 

functions? 
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Cool Tree 2: Energy/Response Tradeoff 

  Natural Question: Do properties of the  
power function affect whether one can 
have a competitive algorithm? 

  One answer: If the algorithm doesn’t know 
the size of a job when it arrives, then the 
algorithm can not be competitive if the 
power function is very steep 
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Cool Tree 2: Energy/Response Tradeoff 

  Natural Question: Do properties of the  
power function affect whether one can 
have a competitive algorithm? 

  Another answer: The following algorithm is 
competitive for all power functions: 
  Job selection: Shortest Remaining 

Processing Time (SRPT) 
  Speed Scaling: Power = number of unfinished  

jobs + 1 
  The analysis requires completely different 

techniques than the analysis of SRPT with a 
fixed speed processor because 
  With a fixed speed processor the resource 

available per unit time is fixed 
  With a variable speed processor, the 

resource (energy) is global, and you get a 
concave nonlinear return for investing 
resources at a particular time  
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Some Concluding Remarks About the Forest: 
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Predictability of the Model 
  Muthu’s Definition: Science research tries to "model" a complex system 

by something simple, accurate, amenable to math and predictive. 
  In practice, predictive usually means that thinking abstractly/

mathematically within the context of the model is useful for finding a good 
engineering solution, not that the model perfectly predicts what will happen 
in practice 

  Google wants software engineers that have algorithms training, not 
because the RAM model perfectly predicts the performance of an 
algorithm on  a real computer, but because being able to reason about 
computation in an abstract model is useful when searching for a solution 
on a real computer 
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What Was Learned From This Research 

  We got way better at reasoning about energy and temperature 
as resources, at least within the types of models considered 
  Allowable Speeds 

  Best Model: Continuous and unbounded. Other models are more 
complicated without providing more insight 

  Power P as a function of speed s  
  For some problems, one can reason about an arbitrary power 

function 
  Newton’s Law of Cooling dT/dt = P – bT 

  The easiest way to think about approximate temperature is 
energy over time intervals of length 1/b 

  I can plausibly imagine teaching future engineers to think 
abstractly about power/energy/temperature as we currently 
teaching future software engineers to think about time/space. 
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Science of Power Management 
  Questions for this workshop:  

  What might a science of power management look like? 
  What areas of power management are most amenable to scientific 

investigation? 
  What areas of power managements would most benefit from a better 

scientific foundation? 
  What benefits are there for a better scientific foundation for these areas 

of power management? 
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Science of Power Management 
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Power Related Engineering 



38 

Speed scaling analysis is hard because energy is a global resource 
that gives nonlinear returns from investment: 

Time 

Algorithm 

Optimal 

At this local time, it may look bad 
for the algorithm, it is using too  much 
energy, and has a lot of unfinished jobs 

waiting 

Power 
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Speed scaling analysis is hard because energy is a global resource: 

Time 

Algorithm 

Optimal 

Main Analysis technique: Define a potential function Φ 
that: 
• Lower bound on energy savings of the algorithm in the 
past 
• Upper bound on extra energy required by the algorithm 
in the future 

Power 



Cool Tree 2: Energy/Response Tradeoff 

  If all jobs are the same size and 
Power=speedα : 
 the potential function Φ = 

(number of excess jobs)2-1/α 
works 

 that is, Φ is an lower bound on 
energy savings in the past, and an 
upper bound on the extra energy 
required in the future 
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Cool Tree 2: Energy/Response Tradeoff 

  For arbitrary jobs sizes and an 
arbitrary power function P, Φ is 
more complicated: 
 Φ = ∫job sizes q f(number of excess 

jobs of size at least q) 
 Where f(x) = f(x-1) + P’(P-1(x)) 
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