
Stochastic Processors (or processors that do not always
compute correctly by design)

Rakesh Kumar
Department of Electrical and Computer Engineering

University of Illinois, Urbana-Champaign

In this talk, we will discuss a new way of reducing processor power – relaxing correctness constraints on processors.. we will call such processors stochastic processors..

Insisting on Correctness Always is Expensive

• Traditional CMOS-based
computing engines take too
much power because they are
designed to always compute
correctly
• E.g., Guard-banding,

redundancy, etc. increase
power significantly

á
Errors/
Cycle

104

106

zero errors

massive
errors

power significantly
• Insistence on correctness

creates designs that fail
catastrophically (below a certain
critical voltage, for example)

• Severely limits opportunities
to reduce processor power.
Eg., voltage can�t be
reduced below critical
voltage

Cycle

Increase Clock Frequency à
Or

Decrease Supply Voltage
Or

Increase Aging Degradation
Or

Increase Process Variations

zero errors

(Critical Operating Point Hypothesis).
(courtesy Janak Patel, Illinois)

The basis of the work is following..if you look at traditional computing engines..one of the reasons why they take too much power is that they are expected to always compute correctly..and this is in face of the several deliberate or unwanted non-idealities in the environment…another big source of power consumption due to insisting on correctness is that the designs seem to have a critical voltage or frequency..so a design would work well below this critical voltage or won’t after that…so the failures are ctastrpjic and significant opportunities are lost to reduce power..

Insisting on Correctness Always is Expensive

• Cost of �always correct� computation even higher for
nanoscale and post-CMOS technologies
• Substrates exhibit high levels of parameter variations and

other non-idealities
• Cost of redundancy or guardbanding potentially enormous

• Hypothesis: Extremely low power designs possible • Hypothesis: Extremely low power designs possible
that do not always compute correctly, but still produce
acceptable results due to the nature and number of
errors.

• We call such architectures stochastic processors.

So, the research agenda that we have to design stochastic processors is based on the hypothesis that..

Comparing against Better-than-Worst-Case Designs

• Better than worst-case
Designs (e.g., Razor) allow
occasional errors to save
power.
• Allow aggressive voltage

scaling, for example

• Benefits limited by the
existing design of the

Decrease Supply Voltage à

1

2

á
Errors
Per

Hour/day

Good for Razor

• Benefits limited by the
existing design of the
processors
• Most power benefits in the

range where there are no errors
• Very small voltage range

where Razor is useful in face
of errors

• Even if processor were
designed to degrade
gracefully, can�t do much
scaling beyond critical
voltage/frequency

á
Errors/
Cycle

104

106

zero errors

massive
errors

Reality for GPPs

Now before I talk more about stochastic processors, a natural question to ask would be – what about recent work on better-than-worst case design..for example, Razor..

16-bit Ripple Carry Adder
16-bit RCA, 180K samples, T=1000, skew=215

0.800

1.000

1.200

1.400

1.600

error rate

Razor Error Rate

avg delay (%T)

% Uncorrectable

Razor Uncorrectable Rate

0.000

0.200

0.400

0.600

0.700 0.750 0.800 0.850 0.900 0.950 1.000 1.050 1.100 1.150 1.200

Vdd

Razor Uncorrectable Rate

Razor only works in size T window
100% False Razor-induced errors when min < skew

Must turn off Razor and accept some level of error
Many uncorrectable errors when T+skew not large enough

Comparing against Better-than-Worst-Case Designs

• Better than worst-case Designs
(e.g., Razor) allow occasional
errors to save power.

• Allow aggressive voltage scaling,
for example

• Benefits limited by the existing
design of the processors

• Most power benefits in the range
where there are no errors

Decrease Supply Voltage à

1

2

á
Errors
Per

Hour/day

Good for Razor

where there are no errors
• Very small voltage range where

Razor is useful in face of errors
• Even if processor were designed

to degrade gracefully, can�t do
much scaling beyond critical
voltage/frequency

• Still do not allow errors to be
exposed to the system/application

• So not really allowing errors

á
Errors/
Cycle

104

106

zero errors

massive
errors

Reality for GPPs

Need something better than better-than-worst-case designs

Now before I talk more about stochastic processors, a natural question to ask would be – what about recent work on better-than-worst case design..for example, Razor..

Stochastic Processors: Insights and Research Plan

• Insight#1:
• A large class of emerging client-side (in field) applications have

inherent algorithmic/cognitive noise tolerance.
• So, processors can be optimized for very low-power instead of always

preserving correctness.
• Errors tolerated by the applications instead of spending power in

detecting/correcting errors at the circuit/architecture level.
• Insight#2:

• If processor designed to make errors gradually instead of • If processor designed to make errors gradually instead of
catastrophically, significant power savings possible

• E.g., when input voltage is decreased below critical voltage
(voltage overscaling). for power reduction.

• Research Plan
• Develop stochastic architectures that produce

graceful degradation in terms of errors
• Define the CAD flow for implementation

stochastic processor architectures
• Develop a library of error-tolerant kernels
that implement (Mobile Augmented Reality) MAR applications.

Our stochastic processor-related research agenda is driven by the following two insights..based on thes insights our research agenda consists of..

Stochastic Processors: An example microarchitectural
solution

FPGA testbed consisting of soft-core processor
• Modified to allow frequency/voltage overscaling

§ Utilizes Leon3 processor
§7-stage in-order pipeline, SPARC 8 ISA

§ Stratix II FPGA
§Baseline uses On-chip signed 18x18 hardware
multiplier
§Stochastic version uses an soft array-based
multiplier with staggered delay characteristics

Significant throughput/power benefits of a stochastic processor design
(More details in our SLESE 2009 paper)

As an example solution..

Stochastic Processors: An example CAD-level solution

• For a slow rising slack, we have to move
the slack of some paths to the right
(positive) position by applying a tighter
constraint.

• There are two methods on this; path
based and cell based.

• In the path based method, we can use a
�set_max_delay �from �to� constraints on
some selected paths in SP&R.
�set_max_delay �from �to� constraints on
some selected paths in SP&R.

• Using this tighter constraints on some
paths, the shape of slack distribution
could be changed.

• In the cell based method, we can
multiply a derating factor to the delay of
cells on the target paths. This method
will be easier to implement than the path
based method.

Based on these conclusions, we are follwing the following methodology for our stochastic processor design

Stochastic Processors: An example architecture-level
solution

Computation Tile

Voter Control

Virtual Channel
Allocator

Switch Allocator

Vote Tables (CAMs)

Input Bufers

(Val,Cnt)

Router

Microarchitecture allows
maximal separation of
datapath and control

•E.g., GALS

A shared-nothing/message
passing architecture with
configurable routers and voting
logic

Core

LS

Router

Configurable
Soft Voter/ RM

Encoder/
Decoder

Ckpt

logic
•Allows fault containment
and tolerance to timing
errors due to asynchrony

Dynamic NMR allows
adaptation to different
reliability targets

In-network voting reduces
the overhead of voting

Related Work
• Probabilistic System-on-chip Architectures

• Partition applications into probabilistic and deterministic components
• Run probabilistic components on a PCMOS co-processor (powered

near sub-threshold voltage)

• Stochastic Processors vs PSOC
• Our approaches target power reduction in general purpose processors
• PSOC designs are hand-partitioned and application specific
• Applications

• Stochastic processors useful for a large class of applications with no • Stochastic processors useful for a large class of applications with no
explicit probabilistic components

• PSOC requires strict partitioning between probabilistic and
deterministic components

• Error Characteristics
• PSOC requires controlled randomness/errors
• We focus more on efficient techniques to eliminate or deal with

errors rather than controlling their characteristics
• Accelerator / coprocessor design of PSOC incurs communication cost

• This can become an issue when probabilistic step is critical to the
application

One example of a solution that we are pursuing is..

Summary and conclusions
• Significant power/throughput benefits may be possible if

correctness in all situations is not a requirement

• Cannot simply use the better than worst-case designs

• Stochastic processors allow aggressive undervolting/overscaling
even beyond critical voltage/frequency

• May also expose errors to system software/applications
• May be the only way to do design for nanoscale/post-CMOS • May be the only way to do design for nanoscale/post-CMOS

technologies

• Preliminary results are promising

• Open up an entire area of research that is interesting and with
potentially very high payoffs

