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Workshop’s Goal: Give Some Initial Answer  
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This Talk’s Goal 
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Give an algorithmist’s view of what a small piece 
of this might look like 
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Power Related Engineering 
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Motivating Technology: Speed Scaling 
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One Question Raised By This Technology 

  Engineering Question: How do you manage/
scale the speed/power, and how does this 
interact with scheduling?   
 Overarching engineering question for this talk 
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Science from the Algorithmist’s View 
  Science research tries to model a complex system by 

something simple, accurate, amenable to math and 
predictive. 
  Google researcher Muthu Muthukrishnan’s “My Slice of 

Pizza” blog 
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• Accurate 
• Realistic 
• Predictive 

• Simple 
• Amenable to math 



Another Muthu Quote: 

  I realized this week in a meeting (at Google) that we 
have people who see the tree and those that see the 
forest, neither is useful. We need people who see a 
tree and know it is in a forest, and who see a forest 
and know that it is made up of trees. 
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Agenda 
  Forest: How do you manage/scale 

the speed/power, and how does 
this interact with scheduling? 

  Enumerate some of the interesting 
trees/models in the forest: 
  Physics 
  Objective 
  Analysis method 
  etc. 

  Explain what is known about a 
couple interesting trees, and relate 
this back to the forest 
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  The system needs 
 Job selection algorithm: determines which job is 

run 
 e.g. Shortest Job First, 
 Shortest Remaining Processing Time, 
 Shortest Elapsed Time, etc. 

 Speed scaling algorithm: determines the speed 
that the processor is run 
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Modeling Policies/Algorithms and Schedules 
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  Dual Objectives: 
  Some Quality of Service (QoS) measure of the schedule 

  e.g. deadline feasibility, average response time, worst-case 
response time, average slow down, etc. 

  Some power related objective 
  e.g. temperature, energy 
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Scheduling Objectives 



Physical Models 

 Allowable Speeds 
 Continuous and unbounded  
 Continuous and bounded 
 Discrete 

  Power P as a function of speed s  
 P = sα where α is some constant 

 Motivated by cube-root rule for dynamic power in 
CMOS based processors, i.e. α ≈ 3 

 P = sα + constant static power 
 P = f(s) for some arbitrary function f 
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Physical Models 

  Energy = ∫time Power 
 Temperature T 

 Newton’s Law of Cooling:  rate of heat loss of a 
body is proportional to the difference in 
temperatures between the body and its 
surroundings   
 dT/dt = P – b T 
 b is device dependent constant 
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How to Compare Algorithms? 
  Average Case (Queuing Theory)  

  Assume a mathematically tractable input distribution, e.g. 
Poisson arrivals and exponential job sizes, and compute 
expected performance of the algorithms 

  Worst-case Relative Error (Competitive Analysis) 
  An algorithm A is competitive if it has bounded relative error  

 Max_I  |A(I) – Optimal(I)|/Optimal(I) < ∞ 
  An algorithm is optimally competitive if it has minimal worst-

case relative error among all possible algorithms 
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Agenda 
  Forest: How do you manage/scale 

the speed/power, and how does 
this interact with scheduling? 

  Enumerate some of the interesting 
trees/models in the forest: 
  Physics 
  Objective 
  Analysis method 
  etc. 

  Explain what is known about a 
couple interesting trees, and relate 
this back to the forest 
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Cool Tree 1: Deadline Feasibility and Temperature 

  Assume that somehow a system knows a 
deadline for each job  
  This makes the scheduling QoS objective a 

constraint 
  WLOG one can use Earliest Deadline First 

for the job selection algorithm 
  Allows one to focus on the speed scaling 

algorithm 
  Power objective is to minimize the maximum 

temperature ever reached by the device.  
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Cool Tree 1: Deadline Feasibility and Temperature 

  Understanding Newton’s Law:                   
dT/dt = P - bT 
  If b=0,  max temperature = energy 
  If b=∞, max temperature = max power 
  Key theorem for analysis: Maximum 

temperature ≈  maximum energy over 
any time interval of length 1/b 

  Natural Question: Does the speed scaling 
algorithm require knowledge of the device 
specific cooling parameter b to be 
competitive? 
  Assume power = polynomial in speed  
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Cool Tree 1: Deadline Feasibility and Temperature 

  Theorem: There is an optimally competitive 
algorithm when b=∞ 
  Algorithm Description: At time t, run at 

speed equal to the maximum over all           t1 
< t < t2 of e*w(t1, t, t2)  
  Where w(t1, t, t2) is the aggregate size 

of the jobs that arrive after t1, and 
before t, with deadlines before t2 

  Note that this algorithm is reasonably 
simple, but sufficiently non-intuitive that it 
is hard to imagine it being discovered by 
experimentation and local search 

  Theorem: This algorithm is simultaneously 
competitive for all cooling parameters b 
  Some natural algorithms that are 

competitive for energy (b=0), are not 
competitive for larger b 
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Cool Tree 2: Energy/Response Tradeoff 

  Setup: A user specifies an energy amount ρ 
that he/she is willing to spend to get a unit 
improvement in response time 
  e.g. I am willing to spend 3 ergs of energy for a 1 

microsecond improvement in response time for a 
particular job 

  Response time of  a job = completion time minus 
release time 

  Resulting Objective:                                   
ρ *total response time + energy used 
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Cool Tree 2: Energy/Response Tradeoff 

  Natural Question: As ρ decreases, and the 
total energy used decreases, can the 
energy of particular jobs increase in the 
optimal schedule ? 
  Recall ρ = amount of energy that you 

are willing to spend to get a unit 
decrease in response time 
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Cool Tree 2: Energy/Response Tradeoff 

  Natural Question: As ρ decreases, and energy used decreases, 
can the energy of particular jobs increase in the optimal 
schedule ? 

  Theorem: In the optimal schedule the power of a job J is 
proportional to the number of jobs that would be delayed if J is 
delayed (Modulo special cases) 

  Answer: So as energy is lost, and jobs interfere more, this 
theorem forces the energy for some jobs up at a faster rate 
than energy is lost 

  The optimal schedule doesn’t change smoothly as a function of 
energy.  

  Open algorithmic problem: find an efficient algorithm to find 
the optimal schedule, or proof that no such algorithm exists  
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Cool Tree 2: Energy/Response Tradeoff 

  Natural Question: Do properties of the  
power function affect whether one can 
have a competitive algorithm? 
  Equivalently, can one reason about arbitrary power 

functions? 
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Cool Tree 2: Energy/Response Tradeoff 

  Natural Question: Do properties of the  
power function affect whether one can 
have a competitive algorithm? 

  One answer: If the algorithm doesn’t know 
the size of a job when it arrives, then the 
algorithm can not be competitive if the 
power function is very steep 
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Cool Tree 2: Energy/Response Tradeoff 

  Natural Question: Do properties of the  
power function affect whether one can 
have a competitive algorithm? 

  Another answer: The following algorithm is 
competitive for all power functions: 
  Job selection: Shortest Remaining 

Processing Time (SRPT) 
  Speed Scaling: Power = number of unfinished  

jobs + 1 
  The analysis requires completely different 

techniques than the analysis of SRPT with a 
fixed speed processor because 
  With a fixed speed processor the resource 

available per unit time is fixed 
  With a variable speed processor, the 

resource (energy) is global, and you get a 
concave nonlinear return for investing 
resources at a particular time  
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Some Concluding Remarks About the Forest: 
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Predictability of the Model 
  Muthu’s Definition: Science research tries to "model" a complex system 

by something simple, accurate, amenable to math and predictive. 
  In practice, predictive usually means that thinking abstractly/

mathematically within the context of the model is useful for finding a good 
engineering solution, not that the model perfectly predicts what will happen 
in practice 

  Google wants software engineers that have algorithms training, not 
because the RAM model perfectly predicts the performance of an 
algorithm on  a real computer, but because being able to reason about 
computation in an abstract model is useful when searching for a solution 
on a real computer 
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What Was Learned From This Research 

  We got way better at reasoning about energy and temperature 
as resources, at least within the types of models considered 
  Allowable Speeds 

  Best Model: Continuous and unbounded. Other models are more 
complicated without providing more insight 

  Power P as a function of speed s  
  For some problems, one can reason about an arbitrary power 

function 
  Newton’s Law of Cooling dT/dt = P – bT 

  The easiest way to think about approximate temperature is 
energy over time intervals of length 1/b 

  I can plausibly imagine teaching future engineers to think 
abstractly about power/energy/temperature as we currently 
teaching future software engineers to think about time/space. 
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Science of Power Management 
  Questions for this workshop:  

  What might a science of power management look like? 
  What areas of power management are most amenable to scientific 

investigation? 
  What areas of power managements would most benefit from a better 

scientific foundation? 
  What benefits are there for a better scientific foundation for these areas 

of power management? 

37 

Science of Power Management 
Mathematics 

Power Related Engineering 



38 

Speed scaling analysis is hard because energy is a global resource 
that gives nonlinear returns from investment: 

Time 

Algorithm 

Optimal 

At this local time, it may look bad 
for the algorithm, it is using too  much 
energy, and has a lot of unfinished jobs 

waiting 

Power 
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Speed scaling analysis is hard because energy is a global resource: 

Time 

Algorithm 

Optimal 

Main Analysis technique: Define a potential function Φ 
that: 
• Lower bound on energy savings of the algorithm in the 
past 
• Upper bound on extra energy required by the algorithm 
in the future 

Power 



Cool Tree 2: Energy/Response Tradeoff 

  If all jobs are the same size and 
Power=speedα : 
 the potential function Φ = 

(number of excess jobs)2-1/α 
works 

 that is, Φ is an lower bound on 
energy savings in the past, and an 
upper bound on the extra energy 
required in the future 
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Cool Tree 2: Energy/Response Tradeoff 

  For arbitrary jobs sizes and an 
arbitrary power function P, Φ is 
more complicated: 
 Φ = ∫job sizes q f(number of excess 

jobs of size at least q) 
 Where f(x) = f(x-1) + P’(P-1(x)) 
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