
On the Science of Speed
Scaling From an

Algorithmist’s Viewpoint

Kirk Pruhs

University of Pittsburgh

Science’s Place in the World

2

Science

Mathematics

Engineering

Science’s Place in the World

3

Statics

Geometry, Algebra

Structural Engineering

Science’s Place in the World

4

Algorithms

Combinatorics

Software Engineering

Workshop’s Goal: Give Some Initial Answer

5

What science goes here?

Mathematics

Power Related Engineering

This Talk’s Goal

6

Give an algorithmist’s view of what a small piece
of this might look like

Mathematics

Power Related Engineering

7

Motivating Technology: Speed Scaling

8

Motivating Technology: Speed Scaling

One Question Raised By This Technology

  Engineering Question: How do you manage/
scale the speed/power, and how does this
interact with scheduling?
 Overarching engineering question for this talk

9

Science from the Algorithmist’s View
  Science research tries to model a complex system by

something simple, accurate, amenable to math and
predictive.
  Google researcher Muthu Muthukrishnan’s “My Slice of

Pizza” blog

10

• Accurate
• Realistic
• Predictive

• Simple
• Amenable to math

Another Muthu Quote:

  I realized this week in a meeting (at Google) that we
have people who see the tree and those that see the
forest, neither is useful. We need people who see a
tree and know it is in a forest, and who see a forest
and know that it is made up of trees.

11

Agenda
  Forest: How do you manage/scale

the speed/power, and how does
this interact with scheduling?

  Enumerate some of the interesting
trees/models in the forest:
  Physics
  Objective
  Analysis method
  etc.

  Explain what is known about a
couple interesting trees, and relate
this back to the forest

12

  The system needs
 Job selection algorithm: determines which job is

run
 e.g. Shortest Job First,
 Shortest Remaining Processing Time,
 Shortest Elapsed Time, etc.

 Speed scaling algorithm: determines the speed
that the processor is run

13

Modeling Policies/Algorithms and Schedules

14

Modeling Policies/Algorithms and Schedules

Job 1
Input

Schedule

Release
Time r1

Work/size w1 =
area of

job

Height = speed

15

Modeling Policies/Algorithms and Schedules

Job 1
Input

Schedule

Current
Time

Job 1

Job 2

Height = speed

16

Modeling Policies/Algorithms and Schedules

Job 1
Input

Schedule

Current
Time

Job 1

Job 2

Job 2 Job 1 Height = speed

17

Modeling Policies/Algorithms and Schedules

Job 1
Input

Schedule

Current
Time

Job 1

Job 2 Job 3

Job 2
Height = speed

18

Modeling Policies/Algorithms and Schedules

Job 1
Input

Schedule

Current
Time

Job 1

Job 2

Job 3
Job 2

Job 3

Height = speed

19

Modeling Policies/Algorithms and Schedules

Job 1
Input

Schedule

Current
Time

Job 1

Job 2

Job 3
Job 2

Job 3

Height = speed

  Dual Objectives:
  Some Quality of Service (QoS) measure of the schedule

  e.g. deadline feasibility, average response time, worst-case
response time, average slow down, etc.

  Some power related objective
  e.g. temperature, energy

20

Scheduling Objectives

Physical Models

 Allowable Speeds
 Continuous and unbounded
 Continuous and bounded
 Discrete

  Power P as a function of speed s
 P = sα where α is some constant

 Motivated by cube-root rule for dynamic power in
CMOS based processors, i.e. α ≈ 3

 P = sα + constant static power
 P = f(s) for some arbitrary function f

21

Physical Models

  Energy = ∫time Power
 Temperature T

 Newton’s Law of Cooling: rate of heat loss of a
body is proportional to the difference in
temperatures between the body and its
surroundings
 dT/dt = P – b T
 b is device dependent constant

22

How to Compare Algorithms?
  Average Case (Queuing Theory)

  Assume a mathematically tractable input distribution, e.g.
Poisson arrivals and exponential job sizes, and compute
expected performance of the algorithms

  Worst-case Relative Error (Competitive Analysis)
  An algorithm A is competitive if it has bounded relative error

 Max_I |A(I) – Optimal(I)|/Optimal(I) < ∞
  An algorithm is optimally competitive if it has minimal worst-

case relative error among all possible algorithms

23

Agenda
  Forest: How do you manage/scale

the speed/power, and how does
this interact with scheduling?

  Enumerate some of the interesting
trees/models in the forest:
  Physics
  Objective
  Analysis method
  etc.

  Explain what is known about a
couple interesting trees, and relate
this back to the forest

24

Cool Tree 1: Deadline Feasibility and Temperature

  Assume that somehow a system knows a
deadline for each job
  This makes the scheduling QoS objective a

constraint
  WLOG one can use Earliest Deadline First

for the job selection algorithm
  Allows one to focus on the speed scaling

algorithm
  Power objective is to minimize the maximum

temperature ever reached by the device.

25

Cool Tree 1: Deadline Feasibility and Temperature

  Understanding Newton’s Law:
dT/dt = P - bT
  If b=0, max temperature = energy
  If b=∞, max temperature = max power
  Key theorem for analysis: Maximum

temperature ≈ maximum energy over
any time interval of length 1/b

  Natural Question: Does the speed scaling
algorithm require knowledge of the device
specific cooling parameter b to be
competitive?
  Assume power = polynomial in speed

26

Cool Tree 1: Deadline Feasibility and Temperature

  Theorem: There is an optimally competitive
algorithm when b=∞
  Algorithm Description: At time t, run at

speed equal to the maximum over all t1
< t < t2 of e*w(t1, t, t2)
  Where w(t1, t, t2) is the aggregate size

of the jobs that arrive after t1, and
before t, with deadlines before t2

  Note that this algorithm is reasonably
simple, but sufficiently non-intuitive that it
is hard to imagine it being discovered by
experimentation and local search

  Theorem: This algorithm is simultaneously
competitive for all cooling parameters b
  Some natural algorithms that are

competitive for energy (b=0), are not
competitive for larger b

27

Cool Tree 2: Energy/Response Tradeoff

  Setup: A user specifies an energy amount ρ
that he/she is willing to spend to get a unit
improvement in response time
  e.g. I am willing to spend 3 ergs of energy for a 1

microsecond improvement in response time for a
particular job

  Response time of a job = completion time minus
release time

  Resulting Objective:
ρ *total response time + energy used

28

Cool Tree 2: Energy/Response Tradeoff

  Natural Question: As ρ decreases, and the
total energy used decreases, can the
energy of particular jobs increase in the
optimal schedule ?
  Recall ρ = amount of energy that you

are willing to spend to get a unit
decrease in response time

29

Cool Tree 2: Energy/Response Tradeoff

  Natural Question: As ρ decreases, and energy used decreases,
can the energy of particular jobs increase in the optimal
schedule ?

  Theorem: In the optimal schedule the power of a job J is
proportional to the number of jobs that would be delayed if J is
delayed (Modulo special cases)

  Answer: So as energy is lost, and jobs interfere more, this
theorem forces the energy for some jobs up at a faster rate
than energy is lost

  The optimal schedule doesn’t change smoothly as a function of
energy.

  Open algorithmic problem: find an efficient algorithm to find
the optimal schedule, or proof that no such algorithm exists

30

Cool Tree 2: Energy/Response Tradeoff

  Natural Question: Do properties of the
power function affect whether one can
have a competitive algorithm?
  Equivalently, can one reason about arbitrary power

functions?

31

Cool Tree 2: Energy/Response Tradeoff

  Natural Question: Do properties of the
power function affect whether one can
have a competitive algorithm?

  One answer: If the algorithm doesn’t know
the size of a job when it arrives, then the
algorithm can not be competitive if the
power function is very steep

32

Cool Tree 2: Energy/Response Tradeoff

  Natural Question: Do properties of the
power function affect whether one can
have a competitive algorithm?

  Another answer: The following algorithm is
competitive for all power functions:
  Job selection: Shortest Remaining

Processing Time (SRPT)
  Speed Scaling: Power = number of unfinished

jobs + 1
  The analysis requires completely different

techniques than the analysis of SRPT with a
fixed speed processor because
  With a fixed speed processor the resource

available per unit time is fixed
  With a variable speed processor, the

resource (energy) is global, and you get a
concave nonlinear return for investing
resources at a particular time

33

Some Concluding Remarks About the Forest:

34

Predictability of the Model
  Muthu’s Definition: Science research tries to "model" a complex system

by something simple, accurate, amenable to math and predictive.
  In practice, predictive usually means that thinking abstractly/

mathematically within the context of the model is useful for finding a good
engineering solution, not that the model perfectly predicts what will happen
in practice

  Google wants software engineers that have algorithms training, not
because the RAM model perfectly predicts the performance of an
algorithm on a real computer, but because being able to reason about
computation in an abstract model is useful when searching for a solution
on a real computer

35

Science: Algorithms
Mathematics: Combinatorics

Software Engineering

What Was Learned From This Research

  We got way better at reasoning about energy and temperature
as resources, at least within the types of models considered
  Allowable Speeds

  Best Model: Continuous and unbounded. Other models are more
complicated without providing more insight

  Power P as a function of speed s
  For some problems, one can reason about an arbitrary power

function
  Newton’s Law of Cooling dT/dt = P – bT

  The easiest way to think about approximate temperature is
energy over time intervals of length 1/b

  I can plausibly imagine teaching future engineers to think
abstractly about power/energy/temperature as we currently
teaching future software engineers to think about time/space.

36

Science of Power Management
  Questions for this workshop:

  What might a science of power management look like?
  What areas of power management are most amenable to scientific

investigation?
  What areas of power managements would most benefit from a better

scientific foundation?
  What benefits are there for a better scientific foundation for these areas

of power management?

37

Science of Power Management
Mathematics

Power Related Engineering

38

Speed scaling analysis is hard because energy is a global resource
that gives nonlinear returns from investment:

Time

Algorithm

Optimal

At this local time, it may look bad
for the algorithm, it is using too much
energy, and has a lot of unfinished jobs

waiting

Power

39

Speed scaling analysis is hard because energy is a global resource:

Time

Algorithm

Optimal

Main Analysis technique: Define a potential function Φ
that:
• Lower bound on energy savings of the algorithm in the
past
• Upper bound on extra energy required by the algorithm
in the future

Power

Cool Tree 2: Energy/Response Tradeoff

  If all jobs are the same size and
Power=speedα :
 the potential function Φ =

(number of excess jobs)2-1/α
works

 that is, Φ is an lower bound on
energy savings in the past, and an
upper bound on the extra energy
required in the future

40

Cool Tree 2: Energy/Response Tradeoff

  For arbitrary jobs sizes and an
arbitrary power function P, Φ is
more complicated:
 Φ = ∫job sizes q f(number of excess

jobs of size at least q)
 Where f(x) = f(x-1) + P’(P-1(x))

41

