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Motivating Technology: Speed Scaling
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Motivating Technology: Speed Scaling
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One Question Raised By This Technology

0 Engineering Question: How do you manage/
scale the speed/power, and how does this
interact with scheduling?

O Overarching engineering question for this talk



Science from the Algorithmist's View

QO Science research tries to model a complex system by
something simple, accurate, amenable to math and

predictive.
O Google researcher Muthu Muthukrishnan's "My Slice of
Pizza" blog
*Accurate Simol
*Realistic 'mpie

Predictive Amenable to math
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Another Muthu Quote:

0 I realized this week in a meeting (at Google) that we
have people who see the tree and those that see the

forest, neither is useful. We need people who see a
tree and know it is in a forest, and who see a forest

and know that it is made up of trees.
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Agenda

0 Forest: How do you manage/scale
the speed/power, and how does
this interact with scheduling?

0 Enumerate some of the interesting
trees/models in the forest:

O Physics

O Objective

O Analysis method
O etc.

0 Explain what is known about a
couple interesting trees, and relate
this back to the forest
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Modeling Policies/Algorithms and Schedules

0 The system needs

O Job selection algorithm: determines which job is
run
> e.g. Shortest Job First,
> Shortest Remaining Processing Time,
> Shortest Elapsed Time, etc.

O Speed scaling algorithm: determines the speed
that the processor is run
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Modeling Policies/Algorithms and Schedules
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Modeling Policies/Algorithms and Schedules
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Modeling Policies/Algorithms and Schedules
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Modeling Policies/Algorithms and Schedules
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Modeling Policies/Algorithms and Schedules

Input

l Current
Time

Schedule q rieign = speec

19



Scheduling Objectives

0 Dual Objectives:

o Some Quality of Service (QoS) measure of the schedule

> e.qg. deadline feasibility, average response time, worst-case
response time, average slow down, eftc.

O Some power related objective
> e.g. femperature, energy
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Physical Models

0 Allowable Speeds
O Continuous and unbounded
O Continuous and bounded
O Discrete

0 Power P as a function of speed s

O P =s%where o is some constant

> Motivated by cube-root rule for dynamic power in
CMOS based processors, i.e. o ® 3

O P = s% + constant static power
0 P = f(s) for some arbitrary function f
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Physical Models

0 Energy = J ;. Power

0O Temperature T
O Newton's Law of Cooling: rate of heat loss of a
body is proportional to the difference in

temperatures between the body and its

surroundings
> dT/dt=P-bT i\
> b is device dependent constant £ () \\.,w




How to Compare Algorithms?

0 Average Case (Queuing Theory)

O Assume a mathematically tractable input distribution, e.g.
Poisson arrivals and exponential job sizes, and compute
expected performance of the algorithms

0 Worst-case Relative Error (Competitive Analysis)
O An algorithm A is competitive if it has bounded relative error
> Max_I |A(T) - Optimal(I)|/Optimal(T) < oo

O An algorithm is optimally competitive if it has minimal worst-

case relative error among all possible algorithms
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Agenda

0 Forest: How do you manage/scale
the speed/power, and how does
this interact with scheduling?

0 Enumerate some of the interesting
trees/models in the forest:

O Physics

O Objective

O Analysis method
O etc.

0 Explain what is known about a
couple interesting trees, and relate
this back to the forest
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Cool Tree 1: Deadline Feasibility and Temperature

0 Assume that somehow a system knows a
deadline for each job

O This makes the scheduling QoS objective a
constraint

O WLOG one can use Earliest Deadline First
for the job selection algorithm

O Allows one to focus on the speed scaling
algorithm

0 Power objective is to minimize the maximum
temperature ever reached by the device.
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Cool Tree 1: Deadline Feasibility and Temperature

0 Understanding Newton's Law:
dT/dt=P-bT
o If b=0, max temperature = energy
O If b=e, max temperature = max power

O Key theorem for analysis: Maximum
temperature ¥ maximum energy over

any time interval of length 1/b

0 Natural Question: Does the speed scaling
algorithm require knowledge of the device
specific cooling parameter b to be
competitive?

O Assume power = polynomial in speed
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Cool Tree 1: Deadline Feasibility and Temperature

0 Theorem: There is an optimally competitive
algorithm when b=

O Algorithm Description: At time t, run at
speed equal to the maximum over all 7]
<t<t, of e*w(ty, t, 1,)

> Where w(t,, T, t,) is the aggregate size
of the jobs that arrive after 1, and
before t, with deadlines before t,

O Note that this algorithm is reasonably

simple, but sufficiently non-intuitive that it

is hard to imagine it being discovered by
experimentation and local search

O Theorem: This algorithm is simultaneously
competitive for all cooling parameters b

O Some natural algorithms that are
competitive for energy (b=0), are not
competitive for larger b
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Cool Tree 2: Energy/Response Tradeoff

O Setup: A user specifies an energy amount p
that he/she is willing o spend to get a unit
iImprovement in response time

O e.g. I am willing to spend 3 ergs of energy for a1
microsecond improvement in response time for a
particular job

O Response time of a job = completion time minus
release time
0 Resulting Objective:
p *total response time + energy used
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Cool Tree 2: Energy/Response Tradeoff

0 Natural Question: As p decreases, and the
total energy used decreases, can the
energy of particular jobs increase in the
optimal schedule ?

O Recall p = amount of energy that you
are willing to spend to get a unit
decrease in response time
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Cool Tree 2: Energy/Response Tradeoff

Q

Natural Question: As p decreases, and energy used decreases,
can the energy of particular jobs increase in the optimal
schedule ?

Theorem: In the optimal schedule the power of a job J is
proportional fo the number of jobs that would be delayed if J is
delayed (Modulo special cases)

Answer: So as energy is lost, and jobs interfere more, this
theorem forces the energy for some jobs up at a faster rate
than energy is lost

The optimal schedule doesn't change smoothly as a function of
energy.

Open algorithmic problem: find an efficient algorithm to find
the optimal schedule, or proof that no such algorithm exists
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Cool Tree 2: Energy/Response Tradeoff

0 Natural Question: Do properties of the
power function affect whether one can
have a competitive algorithm?

o Equivalently, can one reason about arbitrary power
functions?
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Cool Tree 2: Energy/Response Tradeoff

0 Natural Question: Do properties of the
power function affect whether one can
have a competitive algorithm?

O One answer: If the algorithm doesn't know
the size of a job when it arrives, then the
algorithm can not be competitive if the
power function is very steep
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Cool Tree 2: Energy/Response Tradeoff

0 Natural Question: Do properties of the
power function affect whether one can
have a competitive algorithm?

0 Another answer: The following algorithm is
competitive for all power functions:

o Job selection: Shortest Remaining
Processing Time (SRPT) pr.

o Speed Scaling: Power = number of unfinished
jobs +1

0 The analysis requires completely different

techniques than the analysis of SRPT with a
fixed speed processor because

O With a fixed speed processor the resource
available per unit time is fixed

o With a variable speed processor, the
resource (energy) is global, and you get a
concave nonlinear return for investing
resources at a particular time
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Some Concluding Remarks About the Forest
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Predictability of the Model

0 Muthu's Definition: Science research tries to "model" a complex system
by something simple, accurate, amenable o math and predictive.

o Inpractice, predictive usually means that thinking abstractly/
mathematically within the context of the model is useful for finding a good
engineering solution, not that the model perfectly predicts what will happen
in practice

0 Google wants software engineers that have algorithms training, not
because the RAM model perfectly predicts the performance of an
algorithm on a real computer, but because being able to reason about
computation in an abstract model is useful when searching for a solution
on a real computer

Software Engineering
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What Was Learned From This Research

0 We got way better at reasoning about energy and temperature
as resources, at least within the types of models considered
o Allowable Speeds

> Best Model: Continuous and unbounded. Other models are more
complicated without providing more insight

O Power P as a function of speed s

> For some problems, one can reason about an arbitrary power
function

o Newton's Law of Cooling dT/dt =P -bT
> The easiest way to think about approximate temperature is
energy over time intervals of length 1/b
0 I can plausibly imagine teaching future engineers to think
abstractly about power/energy/temperature as we currently
teaching future software engineers to think about time/space.
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Science of Power Management

0 Questions for this workshop:

o
o

Q

What might a science of power management look like?

What areas of power management are most amenable to scientific
investigation?

What areas of power managements would most benefit from a better
scientific foundation?

What benefits are there for a better scientific foundation for these areas
of power management?

Power Related Engineering
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Speed scaling analysis is hard because energy is a global resource
that gives nonlinear returns from investment:

At this local time, it may look bad
for the algorithm, it is using too much
energy, and has a lot of unfinished jobs

waiting

Optimal

Power

Algorithm

Time
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Speed scaling analysis is hard because energy is a global resource:

Power

Main Analysis technique: Define a potential function ®
that:

Lower bound on energy savings of the algorithm in the
past

*Upper bound on extra energy required by the algorithm
in the future

Optimal

Algorithm

Time
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Cool Tree 2: Energy/Response Tradeoff

a If all jobs are the same size and
Power=speed?:
O the potential function @ =
(number of excess jobs)>1/@
works

O that is, ® is an lower bound on  E&&
energy savings in the past, and an | :
upper bound on the extra energy ;
required in the future
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Cool Tree 2: Energy/Response Tradeoff

a For arbitrary jobs sizes and an
arbitrary power function P, ® is
more complicated:

O @ = [0 sizes q F(number of excess
jobs of size at least q)

o Where f(x) = f(x-1) + P'(P-1(x))
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